

Molecules & Electrons in the Energy Transition

Role of the Natural Gas Infrastructure

New Dynamics in the natural gas sector in Europe Central European Energy Conference

18th Nov 2019, Bratislava

Hans Rasmusson, ERIG Secretary General

The range of the challenge – Division of final energy consumption between electrons and molecules

2.5.4 Final Energy Consumption

BY FUEL

- Today: electrons about 20%, molecules above 70% (International: ~80%)
- In year 2050: ?
 - even in high electrification scenarios 40-60% still molecules

Pair 1: Balancing

- The electricity grid need constant balancing of production and consumption, that will increase over time as the shares of RES gets higher.
- Molecule distribution systems are inherently robust and is not effected in that instant way by differences in rate of production and consumption.

Pair 2: Storage

- Electricity have a lack of storage options in significant time frames, volumes, energy density and costs.
- Molecules are easy to store.

Pair 3: Renewable Energy

- Electrons are relatively easy and sheep to produce in a renewable manner.
- It requires more complex systems to produce renewable molecules and is limited to natural resources (if you do not consider Power-to-Gas)

Pair 4: Transport Capacities

- The infrastructure for electricity is encountering it limitations already at lower shares of RES in its 20% of the final energy consumption.
- The infrastructure for molecules is already fitting the current demand. As the requirements for renewables grows, capacity will be freed, that could potentially be used.

Gas – Clean, Low cost applications and Powerful existing infrastructure

Clean Burning + gradually greener

- > Natural Gas is already low CO2
- > Biomethane is state of the art technology

Transmission + distribution network EU

> 2.2 million km

Underground storage EU

 ~ 100 billion m³

~25% EU annual consumption of about 4000 TWh worth of energy

ERIG*

Natural Gas Sector in an integrated approach to the energy system according to "DVGW Energie Impuls"

Source: DVGW

CO₂ reductions of the entire fuel switch in Germany – potential by natural gas alone

Source: DVGW

Content Switch: The future of gas is not "Mono Gas" but "Multi Gas"

- Major elements of the gas transmission, storage and distribution infrastructure and residential gas appliances are expected to be able to accept 10 vol.-% H2 without modification
- Some networks and residential appliances are already being operated with 20 vol.-% of hydrogen [62].
- Major elements of the infrastructure and residential appliances are expected to be able to accept 20 vol.-% H2 with modification*.
- Higher concentrations (> 20 vol.-% H2) can be reached through R&D by further measures or replacement.

Source: www.marcogaz.org/publications-1/documents/hydrogen-infographic/

Current Status – Hydrogen Admission Levels in the Natural Gas infrastructure

- Many industrial processes (except feedstock) are expected to be able to accept 5 vol.-% H2 without modification.
- Current power plant gas turbines, industries using natural gas as feedstock and also CNG steel tanks are assessed to be sensitive to even small quantities of hydrogen and need further R&D/mitigation measures when planning to convey higher hydrogen concentrations.
- Thermoprocessing equipment (such as furnaces and burners) are expected to be able to accept 15 vol.-% H2 with modifications*.
- Higher concentrations (> 15 vol.-% H2) can be tolerated through R&D, further measures or replacement.

Source: www.marcogaz.org/publications-1/documents/hydrogen-infographic/

Ideas for a European "Hydrogen Backbone" – presented at "North Sea Wind meets Gas 2019"

- It is suggested that Europe utilise existing Natural Gas Infrastructure to create a "Hydrogen Backbone"
- Existing under ground storage corresponds to: ~ 900 TWh
- Underground salt caverns can be used for H2
 Storage and salt formations can be found throughout Europe

Source: Prof. Dr. Ad van Wijk, TU Delft, "North Sea Wind meets Gas", October 2019

- In the study, focus was put on connection between Europe and Africa:
 - The main part of the hydrogen backbone infrastructure consists of re-used natural gas transport pipelines with new compressors.
 - -> Similar approaches could be investigated with other bordering regions

Summary

- "Molecules" is the largest part of final energy consumption and it will remain so +/-
- De-carbonisation of the molecules is the biggest challenge and influencer on natural gas sector
- The existing natural gas infrastructure is a key asset with corresponding "Strengths & Weaknesses" to the power system
- We are going from a "Mono Gas System" to a "Multi Gas System"
- How to manage Hydrogen in coherence with CH4 is the key questions for the future

Contact:

Hans Rasmusson ERIG aisbl Secretary General European Research Institute for Gas and Energy Innovation

rasmusson@erig.eu

www.erig.eu

