eustream, a.s. Votrubova 11/A 821 09 Bratislava www.eustream.sk

FUTURE OF NATURAL GAS AND GAS INFRASTRUCTURE

The new challenges and role for gas TSOs

Bratislava, 28th September 2020

Milan Sedláček, Head of EU affairs and strategy

Eustream – Slovak Gas TSO

Key part of the European infrastructure

• 77.4 bcm/y

technical capacity of the entry point Veľké Kapušany/Budince

• 59.7 bcm/y

gas transmission in 2018

- **4 compressor stations** total installed power 500 MW
- 2,273 km

4-5 parallel lines 48"/56"

• 73.5 bars

maximum operating pressure

5th compressor station

recently finished, installed power 46 MW

60,64 billions m³ of gas transported in last financial year

Lets skip two energy policy pillars for today

Figure 24: Correlation between TTF and selected hubs' spot prices – 2017–2019

Affordable Secure Sustainable

Source: ACER calculation based on Platts and ICIS Heren.

Note: Correlation measured as Pearson coefficient. The Pearson correlation coefficient is a measure of the linear correlation between two variables X and Y. In this example, X and Y are closing prices of gas for delivery on the next day at two EU gas hubs. 100% is total positive linear correlation, 0% is no linear correlation, and –100% is total negative linear correlation.

Figure 13: Overview of MSs according to AGTM market health metrics (Upstream company RSI, HHI and number of supply sources) – 2019

Source: ACER calculation based on ENTSOG capacity data, Eurostat and NRAs.

Note: Y-axis measures the percentage of demand in MSs that can be met without an entry capacity reliant on the largest supply origin. RSI gauges pipeline, LNG and domestic production supply capacity not controlled by the largest supplier. It is intended to quantify the competitive strength of the market. RSI disregards storage, but accounts for transits. The feasibility of physical volumes being acquirable is not evaluated, which could result in an overestimate of the RSI. The X axis measures the concentration of companies on the supply side – The HHI¹¹⁰ (see MMR 2015 Annex 1 for further details on the approach). The bubble size represents the number of distinct supply origin sources. The values for Slovakia and the Czech Republic are from the 2018 MMR due to lack of data availability for 2019.

Source: ACER wholesale market report 2019

Times have changed Climate action is of utmost priority

Gas has to find its new role and to adapt

Importance of gas in CEE/SEE region

Situation in CEE is in many aspects dramatically different from the rest of EU.

Maintaining the role of gas can efficiently help to fight three main challenges of today:

- Deeply poluted air
- Energy efficiency
- Energy poverty

Anothe reason – Energy poverty

- The costs of energy for citizens in Slovakia represented up to 15% of total household costs, for low income households nearly 22%.
- Big ratio of polluting energy carriers is used
- Plus ruining forests rapid decrease, leads to uncontrollable and often illegal wood production from forests

What gas infrastructure can offer

Gas infrastructure as enabler of change and part of solution

- The role of the gas infrastructure is more than to be a bridging solution
- Many studies have shown the potential for gas grids to contribute to the decarbonisation of the EU economy, namely by lowering the costs of the transition.

A number of studies demonstrate that it is more cost effective to meet the climate goals with gases (and gas infrastructure) vs full electrification:

Ecofys 'Gas for Climate" study 2018 estimates €138Bn per annum savings

Eurogas 2018 PRIMES study 2018

Frontier Economics 2018 FNB Green Gas Study estimated €12Bn per annum savings in Germany alone

DNV GL 2020 study estimates €130Bn per annum savings

Gas TSOs propose EU Hydrogen backbone

11 gas TSOs: Enagás, Energinet, Fluxys Belgium, Gasunie, GRTgaz, NET4GAS, OGE, ONTRAS, Teréga, Snam and Swedegas

Eustream maps in details of changing gas pipes to hydrogen pipes

		Marcogaz - Infographic]	type						
TSO: Eustream, a.s.	%vol	Hydrogen Limits			41	Eustream, a.s.	[%]	NA	Technical Elements	Flow computer and volume converter [pcs]
0 Example	2%		Technical Elements	Pipeline length [km]	42	Eustream a s	[%]	NΔ	Technical Elements	Compressor [units]
					42	Eustream a s	[70]		Technical Elements	Compressor Driver (e.g. turbine, electric meter)
1 Eustream, a.s.	2%		Technical Elements	Pipeline length [km]	43	Eustreum, u.s.	[70]	INA NA		
2 Eustream, a.s.	2%		Technical Elements	Gas Chromatograph [pcs]	44	Eustream, a.s.	[%]	NA	Technical Elements	Compressor Software [pcs]
3 Eustream, a.s.	2%	NA	Technical Elements	Flow computer and volume converter software [pcs]	45	Eustream, a.s.	[%]	NA	Technical Elements	Corrosion Protection [km]
4 Eustream, a.s.	2%	NA	Technical Elements	Flow computer and volume converter [pcs]	46	Eustream, a.s.	[%]	NA	Technical Elements	Pigging station [pcs]
5 Eustream, a.s.	2%		Technical Elements	Compressor [units]	47	Eustream, a.s.	[%]	NA	Technical Elements	Filters & Separators
7 Fustream a s	2%	NA	Technical Elements	Compressor Software [ncs]	48	Fustream a s	[%]	NA	Technical Elements	Preheater
8 Eustream, a.s.	2%	101	Technical Elements	Corrosion Protection [km]	10	Eustream a c	[0/]	NA	Technical Elements	Shut offusive
9 Eustream, a.s.	2%		Technical Elements	Pigging station [pcs]	49	Eustreum, u.s.	[70]	NA		
10 Eustream, a.s.	2%		Technical Elements	Filters & Separators	50	Eustream, a.s.	[%]	NA	Technical Elements	Pressure regulator
11 Eustream, a.s.	2%		Technical Elements	Preheater	51	Eustream, a.s.	[%]	NA	Technical Elements	Gas Relief Valve
12 Eustream, a.s.	2%		Technical Elements	Shut-off valve	52	Eustream, a.s.	[%]	NA	Technical Elements	Odorant Injection nozzle
13 Eustream, a.s.	2%		Technical Elements	Pressure regulator	53	Eustream, a.s.	[%]	NA	Technical Elements	Turbine Gas Meter
14 Eustream a s	2%		Technical Elements	Odorant Injection nozzle	54	Eustream a s	[/-]	NA	Technical Elements	Potary Displacement Cas Meter
16 Eustream, a.s.	2%		Technical Elements	Turbine Gas Meter	54	Eustream, a.s.	[70]			
17 Eustream, a.s.	2%		Technical Elements	Rotary Displacement Gas Meter	55	Eustream, a.s.	[%]	NA	Technical Elements	Ultrasonic Gas Meter
18 Eustream, a.s.	2%		Technical Elements	Ultrasonic Gas Meter	56	Eustream, a.s.	[%]	NA	Technical Elements	Diaphragm Gas Meter
19 Eustream, a.s.	2%		Technical Elements	Diaphragm Gas Meter	57	Eustream, a.s.	[%]	NA	Technical Elements	Coriolis Gas Meter
20 Eustream, a.s.	2%	NA	Technical Elements	Coriolis Gas Meter	58	Eustream, a.s.	[%]	NA	Technical Elements	Flanges & Fittings
21 Eustream, a.s.	2%	NA	Technical Elements	Flanges & Fittings	59	Fustream a s	[%]	NΔ	Technical Flements	Fluid Catchers
22 Eustream a s	2%	NA	Technical Elements	Vent & Blowdown Silencer	55	Eustream, a.s.	[/0]	NA	Technical Elements	Vent & Dlawdown Silencor
24 Eustream, a.s.	2%	101	Technical Elements	Gas boilers	00	Eustreum, u.s.	[70]	NA		
25 Eustream, a.s.	2%	NA	Technical Elements	Hydrogen Gas Alarms [pcs]	61	Eustream, a.s.	[%]	NA	Technical Elements	Gas boilers
26 Eustream, a.s.	2%	NA	Technical Elements	Vortex Gas Meter	62	Eustream, a.s.	[%]	NA	Technical Elements	Hydrogen Gas Alarms [pcs]
27 Eustream, a.s.	2%	NA	Technical Elements	Others [pcs]	63	Eustream, a.s.	[%]	NA	Technical Elements	Vortex Gas Meter
28 Eustream, a.s.	2%	NA	Operational Elements	Quality Tracking System [pcs]	64	Eustream. a.s.	[%]	NA	Technical Elements	Others [pcs]
29 Eustream, a.s.	2%	NA	Operational Elements	C.S-Operation [pcs]	65	Fustream, a.s.	[%]	NA	Operational Elements	Quality Tracking System [ncs]
30 Eustream, a.s.	2%	NA	Operational Elements	Data exchange among TSOs	66	Eustream a s	[%]	NA	Operational Elements	C S-Operation [pcs]
31 Eustream, a.s.	2%	NA	Operational Elements	Data provided to transmission system Users	00	Eustream, a.s.	[70]			Data such as an area TCOs
32 Eustream, a.s.	2%	NA	Operational Elements	Other Supporting IT systems	67	Eustream, a.s.	[%]	NA	Operational Elements	Data exchange among ISUS
33 Eustream, a.s.	2%	NA	Operational Elements	Trainings	68	Eustream, a.s.	[%]	NA	Operational Elements	Data provided to transmission system Users
34 Eustream, a.s.	2%	NA	Operational Elements	Safety Assessment [pcs]	69	Eustream, a.s.	[%]	NA	Operational Elements	Other Supporting IT systems
35 Eustream, a.s.	2%	NA	Operational Elements	Maintenance Othors [ncs]	70	Eustream, a.s.	[%]	NA	Operational Elements	Trainings
37 Eustream, a s	2%	NA	Project Elements	Project for the transition to include hydrogen	. 71	Fustream, a s	[%]	NA	Operational Elements	Safety Assessment [ncs]
38 Eustream, a.s.	[%]	NA	Technical Elements	Pipeline length [km]		Eustream a s	[%]	NA	Operational Elements	Maintenance
39 Eustream, a.s.	[%]	NA	Technical Elements	Gas Chromatograph [pcs]	72	Eustreum, u.s.	[/0]	INA		
40 Eustream, a.s.	[%]	NA	Technical Elements	Flow computer and volume converter software [pcs]	73	Eustream, a.s.	[%]	NA	Operational Elements	Uthers [pcs]
					74	Eustream, a.s.	[%]	NA	Project Elements	Project for the transition to include hydrogen

- Methane emissions account for about 16% of the total of anthropogenic GHG emissions; the Global Warming Potential of methane is 28 – 34 times vs. CO₂ (100-year timescale).
- The oil and gas industry contribute roughly **a quarter** of the world's anthropogenic methane emissions and operators in the sector have been trying to reduce their emissions for years, to **demonstrate their credibility to stakeholders**.

Eustream - Methan leakage reduction effort

Rok	Objem ZP tis. m3 / rok	CH4 v ZP tis. m3 / rok	CH4 t / rok	CO2 equivalent t /rok
2016	14 419	13 265	8 715	217 88
2017	20 888	19 217	12 626	315 63
2018	17 473	16 075	10 561	264 03
2019	10 818	9 953	6 539	163 47
Total	63 598	58 510	38 441	961 02

Evacuated more than 330 mil. m³ of gas

CO2

eqv

25

CH4 v ZP CH4 density

kg/m3

0.657

(min)

92%

- About 1 million tons of CO2 equivalent was saved last 4 years due to our effort and Best Available Technology in use
- Efficiency of process boosted from 36 % to 95 %

Eliminating uncontrolled CH₄ leakages

Methane emissions reduction effort

Use best available technology to detect leaks

Quantify leake

Some concluding remarks

- Decarbonization ≠
- Decarbonization
- Energy system integration
- Natural gas

≠ only atoms

=

- = also molecules (hybrid energy system)
 - = sine qua non condition for success
 - an effective trajectory (if conditions are met)

eustream, a.s. Votrubova 11/A 821 09 Bratislava www.eustream.sk

Thank you for your attention.